$\frac{\texttt{NAVSHIPREPFAC} \ \ \texttt{YOKOSUKA}}{\texttt{LOCAL} \ \ \texttt{STANDARD} \ \ \texttt{ITEM}}$ FY-00 $\begin{array}{ccc} \text{ITEM NO:} & \underline{099-45YO} \\ \text{DATE:} & \underline{01 \text{ JUL } 1998} \\ \text{CATEGORY:} & \text{II} \end{array}$ - 1. SCOPE: - 1.1 Title: Tapered Plug Valve; repair - 2. REFERENCES: - a. None. - 3. REQUIREMENTS: - 3.1 Matchmark valve parts. - (V) "INSPECT PARTS FOR DEFECTS" - 3.2 Disassemble, clean internal and external surfaces free of foreign matter (including paint), and inspect parts for defects. - 3.3 Repair valve as follows: - 3.3.1 Machine, grind, or lap and spot-in plug to bore to obtain an 80 percent minimum surface contact, evenly distributed over 100 percent of the area. - (V)(G) "INSPECT CONTACT" - 3.3.1.1 Inspect contact using blueing method. - 3.3.1.2 Vertical misalignment of ports in the plug valve and body with the plug fully seated shall not be of a degree that will restrict flow. - 3.3.2 Chase and tap exposed threaded areas. - 3.3.3 Dress and true gasket mating surfaces. - 3.4 Assemble valve installing new packing and gaskets in accordance with the manufacturer's specifications, and new fasteners in accordance with Table One, or Table 2 for DDG-51 class. - 3.4.1 Lubricate each MIL-V-24509 valve with grease conforming to MIL-G-6032. 1 of 6 ITEM NO: $\frac{099-45\text{YO}}{\text{FY}-00}$ - 3.5 Hydrostatically test valve as follows: - 3.5.1 Hydrostatic test equipment shall have the following capabilities: - 3.5.1.1 Manual overpressure protection release valve. - 3.5.1.2 Self-actuated and resetting relief valve with a set point no greater than 100 PSIG above the test pressure or 10 percent above the test pressure, whichever is less. - 3.5.1.3 Master and backup test gages with gage range and graduation shown on Table 3. - 3.5.1.4 Protection equipment shall be accessible and test gages shall be located where clearly visible and readable to pump operator and inspector. ### (V)(G) "SEAT TIGHTNESS" - 3.5.2 Test for seat tightness with valve in closed position with opposite side open for inspection. - 3.5.2.1 Plug shall be seated by hand force. - 3.5.2.2 Test shall be continued for a minimum of three minutes if there is no evidence of leakage, or in the event of visible leakage, until accurate determination of leakage can be made. - 3.5.2.3 Maximum allowable leakage for a metal-to-metal seated valve: 10 cubic centimeters (cc) per hour, per inch of nominal pipe size. Valve sizes one inch or less may be 10 cc maximum per hour. - 3.5.2.4 Allowable leakage for soft seated plug: None. #### (V)(G) "SEAT TIGHTNESS" 3.5.3 Test plug valve of duplex strainer to each strainer chamber with unpressurized side top cover removed (two tests per strainer). Allowable leakage: With the drain valve closed the non-pressurized side shall not fill within one hour. #### 4. NOTES: - 4.1 Test pressures of 3.5.2, and 3.5.3 will be specified in the invoking Work Item. - 4.2 Repair of valve operating gear will be specified in the 2 of 6 ITEM NO: $\frac{099-45YO}{FY-00}$ #### TABLE ONE #### VALVE BODY MATERIAL | | 1/
Alloy Steel | Carbon Steel | 2/
Nonferrous | |---|-------------------|--------------|---| | 3/
Studs and
Bolts to
MIL-S-1222 | Grade B-16 | Grade B-16 | Phosphor Bronze - Any Grade
Silicon Bronze - Any Grade
Nickel Copper - Class A <u>4</u> / | | Nuts to
MIL-S-1222 | Grade 4 or 7 | Grade 4 or 7 | Phosphor Bronze - Any Grade
Silicon Bronze - Any Grade
Nickel Copper - Class A or
Class B 5/ | | Socket
Head Cap
Screws | FF-S-86 | FF-S-86 | | - 1/ Alloy steel is of Composition A 2-1/4 percent Chromium, one percent Molybdenum, Composition B - 1-1/4 percent Chromium, 1/2 percent Molybdenum, and Composition C - Carbon Molybdenum. - 2/ Nonferrous Alloy except Aluminum. - 3/ Studs shall be Class 2 or 3 fit on the nut end and Class 5 fit on the stud end, except that a Class 3 fit with a thread locking compound may be used where temperatures do not exceed 250 degrees Fahrenheit. The thread locking compound shall conform to MIL-S-22473. Inspect Class 3 fit stud ends in accordance with DOD-STD-1371. - 4/ Fasteners of Nickel Copper Aluminum Alloy shall be the only type used on sea chests and hull valves. - 5/ Nuts of Nickel Copper Alloy, conforming to QQ-N-281 Class A or B, or Nickel Copper Aluminum Alloy conforming to QQ-N-286 shall be the only type used on sea chests and hull valves. 3 of 6 ITEM NO: $\frac{099-45\text{YO}}{\text{FY}-00}$ # TABLE 2 VALVE BODY MATERIAL | | 1/
Alloy Steel/Carbon Steel | 2/
Nonferrous | |---|---|--| | 3/
Studs and
Bolts to
MIL-S-1222 | 5/
For services up to and including 650
degrees Fahrenheit; Grade 5 steel | 4/ 5/ | | | For services to 775 degrees
Fahrenheit; Grade B7 or B-16 | Silicon Bronze-
Any Grade | | | For services in 1,000 degrees
Fahrenheit; Grade B-16 | Nickel Copper-
Class A | | | For services in which JP-5, lubricating oil, or inflammable gas or liquid of any kind, regardless of pressure and temperature, which are within 3 feet of hot surfaces (above 650 degrees F) and where steel tubing is required; Grade 2, 5 or 8 steel | | | | Bolting subject to sea water corrosion (other than hull integrity bolting; for hull integrity bolting see Note 4) Connections in contact with bilge regions. Where strength requires ferrous bolting and is exposed to the weather; Class A Nickel - Copper alloy to QQ-N-281 or silicon bronze to ASTM B98 621 with dimensions of MIL-S-1222. Where greater strength is required, use Nickel-Copper-Aluminum alloy QQ-N-286. | | | Nuts to
MIL-S-1222 | 5/
For service up to and including 650
degrees Fahrenheit; Grade 5 steel | Phosphor Bronze
- Any Grade | | | For service to 775 degrees
Fahrenheit; Grade 2H or 4 steel | Silicon Bronze-
Class A or
Class B | | | For service to 1,000 degrees
Fahrenheit; Grade 4 steel | 4/ 5/ | 4 of 6 ITEM NO: $\frac{099-45YO}{FY-00}$ #### TABLE 2 (CONT) For services in which JP-5, lubricating oil, or inflammable gas or liquid of any kind, regardless of pressure and temperature which are within 3 feet of hot surfaces (above 650 degrees F) and where steel tubing is required; Grade 5 or 8 steel Nuts subject to seawater corrosion. Connections in the bilge regions. Where strength requires ferrous material and is exposed to the weather; Class A or B Nickel Copper Alloy to QQ-N-281 or Silicon Bronze to ASTM B98 with dimensions to MIL-S-1222 #### NOTES - 1/ Alloy steel is of Composition A 2-1/4 percent Chromium, one percent Molybdenum, Composition B - 1-1/4 percent Chromium, 1/2 percent Molybdenum, and Composition C-Carbon Molybdenum. - 2/ Nonferrous Alloy except Aluminum. - 3/ Studs shall be Class 2 or 3 fit on the nut end Class 5 fit on the stud end, except that a Class 3 fit with a thread locking compound may be used where temperatures do not exceed 200 degrees Fahrenheit. The thread locking compound shall be in accordance with MIL-S-22473. Inspect Class 3 fit stud ends in accordance with DOD-STD-1371. - 4/ Fasteners of nickel copper alloy shall be the only type used on sea chests and hull valves. - 5/ Where these materials would constitute part of a galvanic couple, proposals for alternate materials shall be submitted for approval. 5 of 6 ITEM NO: <u>099-45YO</u> FY-00 TABLE 3 - MASTER GAGE SELECTION FOR HYDROSTATIC TESTS | Maximum Test
Pressure
(1b/in²g) | | Master Gage Range***
(1b/in²g) | | Master Gage Maximum
Graduation Size
(1b/in²g) | |---|---|--------------------------------------|--|--| | From* | To** | From | To | _ | | 5000
3000
2500
1500
1000
750
500
250
150
100
75
50 | 9500
5800
4800
2800
1800
1300
800
500
250
175
125
80
50 | 0
0
0
0
0
0
0
0 | 10000
6000
5000
3000
2000
1500
1000
600
300
200
160
100
60 | 100
30
30
20
15
10
10
5
2
2
2
1 | | 10
7
5 | 25
10
7 | 0
0
0 | 30
15
10 | 0.2
0.1
0.1 | #### NOTES: - 1. Master gage and back-up gages shall track within two percent of each other. - System maximum test pressures shall be determined by applicable overhaul specification, building specification, or other governing documents. - * Values agree with the requirement that gage range shall not exceed 200 percent of maximum test pressure except for gage ranges 0 to 60 and below. - ** Values allow for reading pressures up to relief valve setting. - *** Exceptions to the values given in this table may be approved locally by Design, based on an evaluation of test pressure, gage range, and specific application. 6 of 6 ITEM NO: $\frac{099-4540}{540}$